Spectral Sequence for Mac Lane Homology

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Third Mac Lane Cohomology via Categorical Rings

In the fifties, Saunders Mac Lane invented a cohomology theory of rings using the cubical construction introduced earlier by Eilenberg and himself to calculate stable homology of Eilenberg-Mac Lane spaces. As shown in [9], this theory coincides with the topological Hochschild cohomology for Eilenberg-Mac Lane ring spectra. In particular, the third dimensional cohomology group is expected to pro...

متن کامل

The strength of Mac Lane set theory

SAUNDERS MAC LANE has drawn attention many times, particularly in his book Mathematics: Form and Function, to the system ZBQC of set theory of which the axioms are Extensionality, Null Set, Pairing, Union, Infinity, Power Set, Restricted Separation, Foundation, and Choice, to which system, afforced by the principle, TCo, of Transitive Containment, we shall refer as MAC. His system is naturally ...

متن کامل

Homological Localizations of Eilenberg-mac Lane Spectra

We discuss the Bousfield localization LEX for any spectrum E and any HR-module X, where R is a ring with unit. Due to the splitting property of HR-modules, it is enough to study the localization of Eilenberg– MacLane spectra. Using general results about stable f -localizations, we give a method to compute the localization of an Eilenberg–MacLane spectrum LEHG for any spectrum E and any abelian ...

متن کامل

Duality and Eilenberg - Mac Lane Spectra

Stable cohomotopy groups of Eilenberg-Mac Lane spectra of finite groups are shown to be trivial. This implies that the stable homotopy category, which is large enough to represent ordinary cohomology theory, cannot be self-dual. It can also be interpreted as an evidence to support Freyd's generating hypothesis and a proof of a stable version of a conjecture of D. Sullivan.

متن کامل

Fibered Symplectic Homology and the Leray-serre Spectral Sequence

We define Floer (or Symplectic) cohomology groups FH ]a, b] (E), −∞ ≤ a < b ≤ ∞ for a class of monotone symplectic fibrations F →֒ E −→ B with closed symplectic base and convex at infinity fiber. The crucial geometric assumption on the fibration is a negativity property reminiscent of negative curvature in complex vector bundles. Our construction is a fibered extension of a construction of Viter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1994

ISSN: 0021-8693

DOI: 10.1006/jabr.1994.1345